SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Miller R. Curr. Neuropharmacol. 2009; 7(4): 302-314.

Affiliation

Otago Centre for Theoretical Studies in Psychiatry and Neuroscience (OCTSPAN), Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, P.O.Box 913, Dunedin, New Zealand.

Copyright

(Copyright © 2009, Bentham Science Publishers)

DOI

10.2174/157015909790031229

PMID

20514210

PMCID

PMC2811864

Abstract

Many issues remain unresolved about antipsychotic drugs. Their therapeutic potency scales with affinity for dopamine D2 receptors, but there are indications that they act indirectly, with dopamine D1 receptors (and others) as possible ultimate targets. Classical neuroleptic drugs disinhibit striatal cholinergic interneurones and increase acetyl choline release. Their effects may then depend on stimulation of muscarinic receptors on principle striatal neurones (M4 receptors, with reduction of cAMP formation, for therapeutic effects; M1 receptors for motor side effects). Many psychotic patients do not benefit from neuroleptic drugs, or develop resistance to them during prolonged treatment, but respond well to clozapine. For patients who do respond, there is a wide (>ten-fold) range in optimal doses. Refractoriness or low sensitivity to antipsychotic effects (and other pathologies) could then arise from low density of cholinergic interneurones. Clozapine probably owes its special actions to direct stimulation of M4 receptors, a mechanism available when indirect action is lost.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print