SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liang CC, Le GN. Int. J. Automot. Technol. 2010; 11(2): 173-185.

Copyright

(Copyright © 2010, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s12239-010-0023-3

PMID

unavailable

Abstract

Buses are an integral part of the national transportation system of each country. A rollover event is one of the most important hazards that concerns the safety of the passengers and the crew in a bus. In the past, it was observed after the accident that the deforming superstructure seriously threatens the lives of the passengers. Thus, the stiffness of the bus frame is the first thing that needs to be considered. The unfortunate side of strengthening the bus superstructure is that it usually causes the bus weight to increase. This paper presents an efficient and robust analysis method with which to design the bus superstructure for a reduction in occupant injuries from rollover accidents while the weight of the strengthened bus is maintained at the same level. First, the absorbed energy of the bus frame and its components during a rollover were investigated by using a LS-DYNA numerical study. The highest energy absorption region, which is the side section of the bus frame, was found and focused on for the investigation of a means to re-distribute the energy-absorption ability of the side frame component. Then the thickness parameters that were obtained from the re-distribution of the energy-absorption ability were used in the analysis to optimize the design. Finally, a prototype of the bus with a reasonable thickness for the window pillars and the side wall bars, which was based on the optimized parameters, was verified to ensure it satisfied ECE R66. In this paper, an effective usage of materials and an efficient and robust analysis method were presented to design the bus superstructure. Although the optimization process for increasing the stiffness is simple, this study improves the upper displacement by 39.9% and the lower displacement by 49.3% (versus the bus survivor space) while maintaining the bus weight at the existing level.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print