SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Finney MA, Cohen JD, Grenfell IC, Yedinak KM. Int. J. Wildland Fire 2010; 19(2): 163-170.

Copyright

(Copyright © 2010, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF07177

PMID

unavailable

Abstract

Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set of laboratory burn experiments in artificial fuel beds where gap structure, depth, and slope were controlled. Results revealed that fire spread was limited by gap distance and that the threshold distance for spread was increased for deeper fuel beds and steeper slopes. The reasons for this behaviour were found using a high-speed thermal camera. Flame movements recorded by the camera at 120 Hz suggested fuel particles experience intermittent bathing of non-steady flames before ignition and that fuel particles across the gap ignited only after direct flame contact. The images also showed that the flame profile within the fuel bed expands with height, producing greater horizontal flame displacement in deeper beds. Slope, thus, enhances spread by increasing the effective depth in the uphill direction, which produces wider flames, and thereby increases the potential flame contact. This information suggests that fire spread across discontinuous fuel beds is dependent on the vertical flame profile geometry within the fuel bed and the statistical properties of flame characteristics.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print