SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xu Y, Cao XJ, Qiao H. IEEE Trans. Syst. Man. Cybern. B Cybern. 2011; 41(1): 107-117.

Copyright

(Copyright © 2011, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TSMCB.2010.2046890

PMID

20457550

Abstract

Classification-based pedestrian detection systems (PDSs) are currently a hot research topic in the field of intelligent transportation. A PDS detects pedestrians in real time on moving vehicles. A practical PDS demands not only high detection accuracy but also high detection speed. However, most of the existing classification-based approaches mainly seek for high detection accuracy, while the detection speed is not purposely optimized for practical application. At the same time, the performance, particularly the speed, is primarily tuned based on experiments without theoretical foundations, leading to a long training procedure. This paper starts with measuring and optimizing detection speed, and then a practical classification-based pedestrian detection solution with high detection speed and training speed is described. First, an extended classification/detection speed metric, named feature-per-object (fpo), is proposed to measure the detection speed independently from execution. Then, an fpo minimization model with accuracy constraints is formulated based on a tree classifier ensemble, where the minimum fpo can guarantee the highest detection speed. Finally, the minimization problem is solved efficiently by using nonlinear fitting based on radial basis function neural networks. In addition, the optimal solution is directly used to instruct classifier training; thus, the training speed could be accelerated greatly. Therefore, a rapid and accurate classification-based detection technique is proposed for the PDS. Experimental results on urban traffic videos show that the proposed method has a high detection speed with an acceptable detection rate and a false-alarm rate for onboard detection; moreover, the training procedure is also very fast.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print