SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Butzke D, Luch A. EXS 2010; 100: 213-232.

Affiliation

Center for Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment, Berlin, Germany. daniel.butzke@bfr.bund.de

Copyright

(Copyright © 2010, Birkhäuser Verlag)

DOI

unavailable

PMID

20358685

Abstract

High-molecular weight protein toxins significantly contribute to envenomations by certain marine invertebrates, e.g., jellyfish and fire corals. Toxic proteins frequently evolved from enzymes meant to be employed primarily for digestive purposes. The cellular intermediates produced by such enzymatic activity, e.g., reactive oxygen species or lysophospholipids, rapidly and effectively mediate cell death by disrupting cellular integrity. Membrane integrity may also be disrupted by pore-forming toxins that do not exert inherent enzymatic activity. When targeted to specific pharmacologically relevant sites in tissues or cells of the natural enemy or prey, toxic enzymes or pore-forming toxins even may provoke fast and severe systemic reactions. Since toxin-encoding genes constitute "hot spots" of molecular evolution, continuous variation and acquirement of new pharmacological properties are guaranteed. This also makes individual properties and specificities of complex proteinaceous venoms highly diverse and inconstant. In this article we portray high-molecular weight constituents of venoms present in box jellyfish, sea anemones, sea hares, fire corals and the crown-of-thorns starfish. The focus lies on the latest achievements in the attempt to elucidate their molecular modes of action.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print