SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Petitjean A, Trosseille X, Petit P, Irwin A, Hassan J, Praxl N. Stapp Car Crash J. 2009; 53: 443-476.

Affiliation

1-CEESAR, 2-LAB-PSA Peugeot Citroen Renault, 3-ACEA-TFD 4-General Motors, 5-Johns Hopkins University, 6-Partnership for Dummy Technology and Biomechanics, Nanterre, France. audrey.petitjean@ceesar.asso.fr

Copyright

(Copyright © 2009, Society of Automotive Engineers SAE)

DOI

unavailable

PMID

20058564

Abstract

The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organisation for Standardisation (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonised dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria). In 2008, the ACEA- Dummy Task Force (TFD) decided to contribute to this work and offered resources for a project manager to coordinate of the effort of a group of volunteer biomechanical experts from international institutions (ISO, EEVC, VRTC/NHTSA, JARI, Transport Canada), car manufacturers (ACEA, Ford, General Motors, Honda, Toyota, Chrysler) and universities (Wayne State University, Ohio State University, John Hopkins University, Medical College of Wisconsin) to develop harmonized injury risk curves. An in-depth literature review was conducted. All the available PMHS datasets were identified, the test configurations and the quality of the results were checked. Criteria were developed for inclusion or exclusion of PMHS tests in the development of the injury risk curves. Data were processed to account for differences in mass and age of the subjects. Finally, injury risk curves were developed using the following statistical techniques, the certainty method, the Mertz/Weber method, the logistic regression, the survival analysis and the Consistent Threshold Estimate. The paper presents the methods used to check and process the data, select the PMHS tests, and construct the injury risk curves. The PMHS dataset as well as the injury risk curves are provided.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print