SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

He X, Chen W, Nie B, Zhang M. Safety Sci. 2010; 48(2): 173-178.

Copyright

(Copyright © 2010, Elsevier Publishing)

DOI

10.1016/j.ssci.2009.07.007

PMID

unavailable

Abstract

In this investigation a new classification technique based on artificial neural network (ANN) and exponent evaluation method (EEM) has been developed to classify the danger classes of coal and gas outburst in deep mines. A weight computing model of mutual affecting factors is derived from backward algorithm of ANN (BA-ANN), which diminishes the influence of factitious factor, the environment factor and the time factor to the weight. The BA-ANN model is used for modeling the correlation between danger class and 12 affecting factors of coal and gas outburst and calculating weights of interconnection factors, which performs very well. In order to classify danger classes in a daily routine, the EEM with the well trained weights which are from BA-ANN, is performed in a deep mine. The case study shows that this new technique is useful to classify danger classes with quick and accurate computation. Moreover, the weight computing model of BA-ANN can be extended to other safety issue in different fields as well.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print