SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Polissidis A, Chouliara O, Galanopoulos A, Rentesi G, Dosi M, Hyphantis T, Marselos M, Papadopoulou-Daifoti Z, Nomikos GG, Spyraki C, Tzavara ET, Antoniou K. Int. J. Neuropsychopharmacol. 2009; 1-17.

Affiliation

Department of Pharmacology, Medical School, University of Ioannina, Ioannina, Greece.

Copyright

(Copyright © 2009, Cambridge University Press)

DOI

10.1017/S1461145709991003

PMID

19941698

Abstract

This study explored the behavioural, neurochemical and molecular effects of Delta9-tetrahydrocannabinol (Delta9-THC) and WIN55,212-2, in two rat phenotypes, distinguished on the basis of their vertical activity upon exposure to a novel environment, as high responders (HR) and low responders (LR). Motor effects were assessed under habituated vs. non-habituated conditions. Dopaminergic activity and DARPP-32 phosphorylation were measured in the dorsal striatum, nucleus accumbens, prefrontal cortex and amygdala. These cannabinoids influenced motor activity in a biphasic manner, i.e. low doses stimulated, whereas high doses suppressed motor activity. Dopamine (DA) biosynthesis was increased in most brain regions studied following Delta9-THC administration mainly in HR rats, and low-dose WIN55,212-2 increased DA biosynthesis in HR rats only. Both high and low doses of Delta9-THC increased DARPP-32 phosphorylation in most brain regions studied in both phenotypes, an effect that was also observed following high-dose WIN55,212-2 administration only in the striatum. The present results provide further support for a key role of cannabinoids in the regulation of motoric responses and elements of dopaminergic neurotransmission and reveal their complex differential effects in distinct rat phenotypes, as seen with other drugs of abuse.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print