SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bertocci GE, Szobota S, Hobson DA, Digges KH. IEEE Trans. Rehabil. Eng. 1999; 7(2): 234-244.

Affiliation

Department of Rehabilitation Science and Technology, University of Pittsburgh, PA 15260, USA.

Copyright

(Copyright © 1999, IEEE (Institute of Electrical and Electronics Engineers))

DOI

unavailable

PMID

10391594

Abstract

The Americans with Disabilities Act (ADA) has led to an increased number of wheelchair users seeking transportation services. Many of these individuals are unable to transfer to a vehicle and are instead required to travel seated in their wheelchairs. Unfortunately, wheelchairs are not typically designed with the same occupant protection features as motor vehicle seats, and wheelchair seated occupants may be at higher risk for injury in a crash. To study the effects of crash level forces on wheelchairs and their occupants, it is useful to simulate crash conditions using computer modeling. This study has used a dynamic lumped mass crash simulator, in combination with sled impact testing, to develop a model of a secured commercial powerbase and restrained occupant subjected to a 20 g/30 mph frontal motor vehicle crash. Time histories profiles of simulation-generated wheelchair kinematics, occupant accelerations, tiedown forces and occupant restraint forces were compared to sled impact testing for model validation. Validation efforts for this model were compared to validation results found acceptable for the ISO/SAE surrogate wheelchair model. This wheelchair-occupant simulation model can be used to investigate wheelchair crash response or to evaluate the influence of various factors on occupant crash safety.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print