SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sances A, Kumaresan S, Clarke R, Renfroe D, Herbst B, Pozzi M. Biomed. Sci. Instrum. 2003; 39: 224-228.

Affiliation

University of California, Biomechanics Institute, Santa Barbara, CA, USA.

Copyright

(Copyright © 2003, Instrument Society of America)

DOI

unavailable

PMID

12724899

Abstract

Various studies have reported that inertially sensitive buckles are susceptible to impact unlatching. The present work synthesizes the results from various experimental studies conducted over the years to study the mechanical behavior of buckles and subsequent injuries to occupants. First, the side press button seat buckle due to impact a lateral impact from an adjacent child restraint seat component indicated that the side button RCF-67 buckle released at a speed of 2.2 m/sec with a force range of 264 to 440 N and acceleration range of 100 to 175 G. In contrast, the top button Autoliv Lockarm buckles did not release up to 1300 vertical G's. Second, side release RCF-67 buckles when loaded with the webbing required approximately three times more force to open than top press buckles. Inverted occupants in a three-point belt could not release the RCF-67 buckle. Third, a side sled impact on the drivers side of a production vehicle buck with a three-point belt and a RCF-67 buckle was done at 7 m/s to 8 m/s. A convertible child seat with a dummy in the passenger seat moved inboard toward the buckle and unlatched it. Fourth, an intact vehicle drop study at 0.3 m showed that the accelerations on a JDC buckle on a metal stalk are large compared to acceleration of the floor pan. The present study provides comprehensive data to evaluate the mechanical behavior of seat buckles under various motor vehicle crash conditions.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print