SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cui W, Guo F, Chen J. Fire Safety J. 2007; 42(3): 232-239.

Copyright

(Copyright © 2007, Elsevier Publishing)

DOI

10.1016/j.firesaf.2006.11.002

PMID

unavailable

Abstract

Flame retardant high impact polystyrene (HIPS) was prepared by melt blending HIPS with nano-modified aluminum trihydrate (nano-CG-ATH) and red phosphorus masterbatch (RPM). Styrene–butadiene–styrene (SBS) was used as a strengthener in this research. The effects of the nano-CG-ATH, RPM, and SBS on properties of HIPS composites were studied using mechanical and combustion tests, and thermogravimetric analysis. The morphologies of fracture surfaces and char layers were characterized through scanning electron microscopy (SEM). The HIPS/nano-CG-ATH/RPM (68/20/12) composite and its combustion residues at various temperatures were characterized by Fourier transform infrared (FTIR) spectra analysis. The results show that the UL-94 rating of the HIPS/nano-CG-ATH/RPM (68/20/12) composite reached V–0 and that its char layer after flame test was well-developed and robust, but that its impact performance was poor. The addition of the SBS improved its impact performance but did not influence its thermal and flame retardant properties, but lowered its tensile strength and flexural modulus to some extent. The FTIR spectra confirm that both P–O–P and P–O–C groups were present in the char. Keywords: High impact polystyrene; Nano-CG-ATH; Red phosphorus masterbatch; Flame retardance; Styrene–butadiene–styrene

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print