%0 Journal Article %T Validation of a two-dimensional gas chromatography mass spectrometry method for the simultaneous quantification of cannabidiol, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC in plasma %J Analytical and bioanalytical chemistry %D 2010 %A Karschner, Erin L. %A Barnes, Allan J. %A Lowe, Ross H. %A Scheidweiler, Karl B. %A Huestis, Marilyn A. %V 397 %N 2 %P 603-611 %X A sensitive analytical method for simultaneous quantification of sub-nanogram concentrations of cannabidiol (CBD), Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH) in plasma is presented for monitoring cannabinoid pharmacotherapy and illicit cannabis use. Analytes were extracted from 1 mL plasma by solid-phase extraction, derivatized with N,O-bis(trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane, and analyzed by two-dimensional gas chromatography mass spectrometry (2D-GCMS) with cryofocusing. The lower calibration curve was linear from 0.25-25 ng/mL for CBD and THC, 0.125-25 ng/mL for 11-OH-THC and 0.25-50 ng/mL for THCCOOH. A second higher linear range from 5-100 ng/mL, achieved through modification of injection parameters, was validated for THC, 11-OH-THC, and THCCOOH and was only implemented if concentrations exceeded the lower curve upper limit of linearity. This procedure prevented laborious re-extraction by allowing the same specimen to be re-injected for quantification on the high calibration curve. Intra- and inter-assay imprecision, determined at four quality control concentrations, were or=72.9% for all analytes. Analytes were stable when stored at 22 degrees C for 16 h, 4 degrees C for 48 h, after three freeze-thaw cycles at -20 degrees C and when stored on the autosampler for 48 h. This sensitive and specific 2D-GCMS assay provides a new means of simultaneously quantifying CBD, THC and metabolite biomarkers in clinical medicine, forensic toxicology, workplace drug testing, and driving under the influence of drugs programs. Keywords: Cannabis impaired driving

Language: en

%G en %I Holtzbrinck Springer Nature Publishing Group %@ 1618-2642 %U http://dx.doi.org/10.1007/s00216-010-3599-6