SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Han M, Lee J, Rim M, Kang CG. Sensors (Basel) 2021; 21(4): e1308.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21041308

PMID

33673210

Abstract

The 3GPP standardized the physical layer specification in 5G New Radio to support enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC) coexistence in usage scenarios including aerial vehicles (AVs). Dynamic multiplexing of URLLC traffic was standardized to increase the outage capacity. DM allocates a fully overlapped bandwidth part (BWP) of eMBB and URLLC AVs to perform the immediate scheduling of URLLC traffic by puncturing ongoing eMBB traffic. However, DM often suffers from a significant frame error incurred by puncturing. Meanwhile, BWP can be sliced orthogonally for eMBB and URLLC AVs, possibly preventing overdimensioning the resources depending on the eMBB and URLLC traffic loads. In this paper, we propose a dynamic BWP allocation scheme that switches between two multiplexing methods, dynamic multiplexing (DM) and orthogonal slicing (OS), so as to minimize an impact of uRLLC traffic on eMBB traffic. To implement efficient BWP allocation, the capacity region is analyzed by considering the effect of physical layer parameters, such as modulation and coding scheme (MCS) levels and code block group size on DM and OS. OS is effective for improving the eMBB throughput under a URLLC latency constraint for deterministic and predictable URLLC traffic, whereas DM has limited error-correcting capability against the URLLC's puncturing effect. The relative MCS level of eMBB and URLLC is critical in determining the eMBB traffic tolerance against puncturing. Identifying the performance tradeoff between DM and OS, the tolerance level is quantified by a URLLC load threshold. It is given in an approximate closed form, which is an essential reference for selecting DM over OS, enabling dynamic BWP allocation for the URLLC AV.


Language: en

Keywords

bandwidth part; dynamic multiplexing; eMBB; orthogonal slicing; resource allocation; unmanned aerial vehicle; URLLC

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print