SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang Y, Xin J. Sensors (Basel) 2019; 19(21): s19214790.

Affiliation

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China. jingjiex@bupt.edu.cn.

Copyright

(Copyright © 2019, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s19214790

PMID

31689946

Abstract

Optical sensing that integrates communication and sensing functions is playing a more and more important role in both military and civil applications. Incorporating optical sensing and optical communication, optical sensor networks (OSNs) that undertake the task of high-speed and large-capacity applications and sensing data transmissions have become an important communication infrastructure. However, multiple failures and disasters in OSNs can cause serious sensing provisioning problems. To ensure uninterrupted sensing data transmission, survivability has always been an important research emphasis. This paper focuses on the survivable deployment of OSNs against multiple failures and disasters. We first review and evaluate the existing survivability technologies developed for or applied to OSNs, such as fiber bus protection, self-healing architecture, and 1 + 1 protection. We then elaborate on the disaster-resilient survivability requirement of OSNs. Moreover, we propose a new k-node (edge) sensing connectivity concept, which ensures the connectivity between sensing data and users. Based on k-node (edge) sensing connectivity, the disaster-resilient survivability technologies are developed. The key technologies necessary to implement k-node (edge) sensing connectivity are also elaborated. Recently, artificial intelligence (AI) has developed rapidly. It can be used to improve the survivability of OSNs. This paper details potential development directions of survivability technologies of optical sensing in OSNs employing AI.


Language: en

Keywords

artificial intelligence (AI); disaster-resilience; k-node (edge) sensing connectivity; network survivability; optical networks; optical sensing; optical sensor networks (OSNs)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print