SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gakne PV, O'Keefe K. Sensors (Basel) 2018; 18(4): s18041244.

Affiliation

Position, Location and Navigation (PLAN) Group, Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB T2N 1N4, Canada. kpgokeef@ucalgary.ca.

Copyright

(Copyright © 2018, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s18041244

PMID

29673230

Abstract

This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.


Language: en

Keywords

GNSS; clustering algorithms; image segmentation; motion estimation; satellites; tightly-coupled integration; upward-facing camera; vehicle navigation; visual odometry

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print