SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ozioko EF, Kunkel J, Stahl F. J. Adv. Transp. 2022; 2022: e2951999.

Copyright

(Copyright © 2022, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2022/2951999

PMID

unavailable

Abstract

Autonomous vehicles (AVs) are emerging with enormous potentials to solve many challenging road traffic problems. The AV emergence leads to a paradigm shift in the road traffic system, making the penetration of autonomous vehicles fast and its coexistence with human-driven cars inevitable. The migration from the traditional driving to the intelligent driving system with AV's gradual deployment needs supporting technology to address mixed traffic systems problems, mixed driving behaviour in a car-following model, variation in-vehicle type control means, the impact of a proportion of AV in traffic mixed traffic, and many more. The migration to fully AV will solve many traffic problems: desire to reclaim travel and commuting time, driving comfort, and accident reduction. Motivated by the above facts, this paper presents an extensive review of road intersection mixed traffic management techniques with a classification matrix of different traffic management strategies and technologies that could effectively describe a mix of human and autonomous vehicles. It explores the existing traffic control strategies and analyses their compatibility in a mixed traffic environment. Then review their drawback and build on it for the proposed robust mix of traffic management schemes. Though many traffic control strategies have been in existence, the analysis presented in this paper gives new insights to the readers on the applications of the cell reservation strategy in a mixed traffic environment. Though many traffic control strategies have been in existence, the Gipp's car-following model has shown to be very effective for optimal traffic flow performance.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print