SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Minegishi Y, Ohmiya Y, Sano T, Tange M. Fire Technol. 2022; 58(2): 709-735.

Copyright

(Copyright © 2022, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10694-021-01173-3

PMID

unavailable

Abstract

In fire evacuation situations, at corridors, many evacuees are plagued by high density, low velocity, and long waiting time. Therefore, engineers have to consider the countermeasure preventing crowd accidents. For this purpose, the development of pedestrian simulators that are constructed with concrete physical parameters, such as the headway distance between pedestrians, velocity, and specific flow, is required. To acquire the evacuation behavior in corridors, we conducted well-controlled pedestrian walking experiments in a confined corridor with realistic architectural geometry and modeled the pedestrian behaviors. An experimental loop corridor was constructed to acquire stable pedestrian flows without distractions from bottlenecks or merging flows. We conducted five experiments with different density patterns with an average density ranging from 1.28 to 3.42 people/m2 and a maximum of 96 test participants. We found that when the headway distance is 0.55-1.15 m, the velocity increases linearly with increasing headway distance, similar to single-file experiments. When the density is higher than 2.35 people/m2, the pedestrians cannot walk at a constant speed, and they exhibit stop-and-go behavior. In this situation, the percentage of pedestrians who walk at a headway distance of approximately 0.4-0.5 m, which is the minimum headway distance, increases. In addition, the fundamental diagram between density and velocity is acquired at a density higher than 1.4 people/m2 as an inversely proportional function. The density dependence on the specific flow is a linear function. The maximum specific flow is acquired at the marginal minimum density where a linear relationship is maintained.


Language: en

Keywords

Density; Evacuation; Headway distance; Pedestrian; Specific flow; Velocity

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print