SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yu R, Li S. Accid. Anal. Prev. 2021; 166: e106537.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.aap.2021.106537

PMID

34952369

Abstract

With the promising development and deployment trends of autonomous vehicles (AVs), AVs' operation safety has become a key issue worldwide. Studies have been conducted to reveal the risk factors of AV operation safety based upon AV-involved crash reports. However, the crash data sample size was limited and the crash reports only recorded static information, thus it failed to identify crash contributing factors and further provide feedbacks to AV algorithm development. In this study, the risk factors were investigated based upon hazardous scenarios, which were claimed to possess consistent causal mechanisms with crash events. First, contributing factors were extracted from both vehicle kinematics and traffic environment aspects, and their volatility features were obtained. Then, path analysis models were developed to reveal the concurrent relationships between scenario volatility and hazardous scenario occurrence probability. Besides, to understand the varying risk factors for hazardous scenarios caused by human drivers and AVs, a logit regression model was further established. The modeling results showed that large volatility of space headway held direct impacts on increasing the AV driving risks. And the volatility of the drivable road area had no significant impacts on AV driving risks while it indirectly influenced human driving risks. Finally, result implications for AV driving behavior improvements have been discussed.


Language: en

Keywords

Autonomous vehicle operation safety; Driving volatility; Field operational data; Unstructured environment data

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print