SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Steinmaßl M, Kranzinger S, Rehrl K. Transp. Res. Rec. 2021; 2675(12): 832-849.

Copyright

(Copyright © 2021, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981211031538

PMID

unavailable

Abstract

Travel time reliability (TTR) indices have gained considerable attention for evaluating the quality of traffic infrastructure. Whereas TTR measures have been widely explored using data from stationary sensors with high penetration rates, there is a lack of research on calculating TTR from mobile sensors such as probe vehicle data (PVD) which is characterized by low penetration rates. PVD is a relevant data source for analyzing non-highway routes, as they are often not sufficiently covered by stationary sensors. The paper presents a methodology for analyzing TTR on (sub-)urban and rural routes with sparse PVD as the only data source that could be used by road authorities or traffic planners. Especially in the case of sparse data, spatial and temporal aggregations could have great impact, which are investigated on two levels: first, the width of time of day (TOD) intervals and second, the length of road segments. The spatial and temporal aggregation effects on travel time index (TTI) as prominent TTR measure are analyzed within an exemplary case study including three different routes. TTI patterns are calculated from data of one year grouped by different days-of-week (DOW) groups and the TOD. The case study shows that using well-chosen temporal and spatial aggregations, even with sparse PVD, an in-depth analysis of traffic patterns is possible.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print