SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yin Y, Li SE, Li K, Yang J, Ma F. Transp. Saf. Environ. 2020; 2(2): 97-105.

Copyright

(Copyright © 2020, Oxford University Press)

DOI

10.1093/tse/tdaa009

PMID

unavailable

Abstract

Vehicles involved in traffic accidents generally experience divergent vehicle motion, which causes severe damage. This paper presents a self-learning drift-control method for the purpose of stabilizing a vehicle's yaw motions after a high-speed rear-end collision. The struck vehicle generally experiences substantial drifting and/or spinning after the collision, which is beyond the handling limit and difficult to control. Drift control of the struck vehicle along the original lane was investigated. The rear-end collision was treated as a set of impact forces, and the three-dimensional non-linear dynamic responses of the vehicle were considered in the drift control. A multi-layer perception neural network was trained as a deterministic control policy using the actor-critic reinforcement learning framework. The control policy was iteratively updated, initiating from a random parameterized policy. The results show that the self-learning controller gained the ability to eliminate unstable vehicle motion after data-driven training of about 60,000 iterations. The controlled struck vehicle was also able to drift back to its original lane in a variety of rear-end collision scenarios, which could significantly reduce the risk of a second collision in traffic.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print