SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yang Z, Yu Q, Zhang W, Shen H. Transp. Res. F Traffic Psychol. Behav. 2021; 76: 353-368.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.trf.2020.12.009

PMID

unavailable

Abstract

A leading vehicle's sudden deceleration can lead to a rear-end collision. Due to a lack of driving experience, novice drivers have a greater tendency to be involved in these accidents. Most previous studies have examined driver response time and braking behaviors, but few researchers have focused on what experienced and novice drivers did after their feet touched the braking pedal and their hands turned the steering wheel. These braking and steering parameters are essential in understanding driver avoidance behavior during emergencies. We programmed rear-end crash risk scenarios to examine experienced and novice drivers' behaviors thoroughly using a driving simulator. Twenty experienced and twenty five novice subjects participated in our experiments, and their braking and steering maneuvers were recorded when leading vehicles ran at 60 km/h, 80 km/h and 100 km/h. The results showed that the two groups of subjects tended to execute two kinds of maneuvers to avoid crashes: braking only (novice 33%, experienced 19%) and the combination of braking with steering (novice 22%, experienced 26%). When the novice drivers executed braking with steering, their response time and steering duration were significantly longer than those of the experienced drivers who executed braking with steering. As the speed increased, the novice drivers' response time, maximum braking force and maximum steering angle were significantly affected. These results showed that novice drivers should brake only when the leading vehicle suddenly decelerates. The experienced drivers executed steadier maneuvers. Their risk perception time was shorter, and their maximum braking force and the maximum steering angles were smaller. The response time, braking intensity and steering wheel angle should be considered when developing rear-end collision warning systems.


Language: en

Keywords

Braking force; Collision avoidance maneuvers; Driving simulator; Rear-end crash; Steering wheel angle

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print