SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang C, Dai Y, Zhou W, Geng Y. J. Adv. Transp. 2020; 2020: e9194028.

Copyright

(Copyright © 2020, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2020/9194028

PMID

unavailable

Abstract

In this paper, a vision-based crash detection framework was proposed to quickly detect various crash types in mixed traffic flow environment, considering low-visibility conditions. First, Retinex image enhancement algorithm was introduced to improve the quality of images, collected under low-visibility conditions (e.g., heavy rainy days, foggy days and dark night with poor lights). Then, a Yolo v3 model was trained to detect multiple objects from images, including fallen pedestrians/cyclists, vehicle rollover, moving/stopped vehicles, moving/stopped cyclists/pedestrians, and so on. Then, a set of features were developed from the Yolo outputs, based on which a decision model was trained for crash detection. An experiment was conducted to validate the model framework. The results showed that the proposed framework achieved a high detection rate of 92.5%, with relatively low false alarm rate of 7.5%. There are some useful findings: (1) the proposed model outperformed empirical rule-based detection models; (2) image enhancement method can largely improve crash detection performance under low-visibility conditions; (3) the accuracy of object detection (e.g., bounding box prediction) can impact crash detection performance, especially for minor motor-vehicle crashes. Overall, the proposed framework can be considered as a promising tool for quick crash detection in mixed traffic flow environment under various visibility conditions. Some limitations are also discussed in the paper.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print