SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Malde D, Pizzimenti N, McCamley J, Sumner B. J. Appl. Biomech. 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Human Kinetics Publishers)

DOI

10.1123/jab.2022-0026

PMID

36898389

Abstract

There is limited research that directly compares the effect of reduced speed with reduced propulsive force production (PFP) on age-related gait changes. We aimed to determine how changes in the gait of older adults correlate with age, speed, or peak PFP over a 6-year span. We collected kinematics and kinetics of 17 older subjects at 2 time points. We determined which biomechanical variables changed significantly between visits and used linear regressions to determine whether combinations of self-selected walking speed, peak PFP, and age correlated to changes in these variables. We found a suite of gait-related changes that occurred in the 6-year period, in line with previous aging studies. Of the 10 significant changes, we found 2 with significant regressions. Self-selected walking speed was a significant indicator of step length, not peak PFP or age. Peak PFP was a significant indicator for knee flexion. None of the biomechanical changes were correlated to the chronological age of the subjects. Few gait parameters had a correlation to the independent variables, suggesting that changes in gait mechanics were not solely correlated to peak PFP, speed, and/or age. This study improves understanding of changes in ambulation that lead to age-related gait modifications.


Language: en

Keywords

aging; longitudinal study; ambulation; propulsive force production

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print